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Fig. 1. We develop a theory of light transport for scenes with stochastic implicit surfaces [Dragiev et al. 2011; Sellán and Jacobson 2022; Williams and
Fitzgibbon 2006] and show that this results in an expressive range of appearance behaviors that covers microfacet surfaces, classical participating media,
and a novel continuum in between. Each object shown above is completely described by a 3D volume that encodes the mean and covariance kernel of a
non-stationary Gaussian process and is rendered using the same rendering algorithm, agnostic of its “appearance type”. The insets show example realizations
of the process at the highlighted points in the scene. Note how the appearance of the stochastic geometry transitions from volumetric (left) to hard-surface
(right) as the correlations in the process are strengthened. Increasing the variance of the process allows us to visualize uncertainty at the macro-scale (bottom).

Stochastic geometry models have enjoyed immense success in graphics for

modeling interactions of light with complex phenomena such as participat-

ing media, rough surfaces, fibers, and more. Although each of these models

operates on the same principle of replacing intricate geometry by a ran-

dom process and deriving the average light transport across all instances

thereof, they are each tailored to one specific application and are funda-

mentally distinct. Each type of stochastic geometry present in the scene is

firmly encapsulated in its own appearance model, with its own statistics
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and light transport average, and no cross-talk between different models or

deterministic and stochastic geometry is possible.

In this paper, we derive a theory of light transport on stochastic implicit
surfaces, a geometry model capable of expressing deterministic geometry,

microfacet surfaces, participating media, and an exciting new continuum in

between containing aggregate appearance, non-classical media, and more.

Our model naturally supports spatial correlations, missing frommost existing

stochastic models.

Our theory paves the way for tractable rendering of scenes in which all

geometry is described by the same stochastic model, while leaving ample

future work for developing efficient sampling and rendering algorithms.
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1 INTRODUCTION
Computer graphics has seen significant progress over the past few

decades, with advances in light transport, material fidelity, and

scene complexity greatly expanding the set of images that can be

rendered. However, scene representations have evolved only slowly

since their inception. Today, there is still a dichotomy that permeates

through light transport theory where scene components are treated

either as participating media or as hard (deterministic) surfaces.

Beyond being intellectually unsatisfying, this distinction creates

real problems in practice. Many rendering concepts invariably create

effects that lie somewhere between surfaces and media. For example,

inverse rendering and real-world scene reconstruction generate

surfaces that contain some level of uncertainty due to measurement

errors. Filtering and level-of-detail (LOD) of complex scenes turn

hard surfaces into volumetric effects that still feature surface-like

reflectance and correlations that are poorly represented by classical

media. Classic scene representations can handle these effects only

via specialized models or not at all, and recent efforts to unify these

models [Dupuy et al. 2016] have not come to clear conclusions.

In this paper, we investigate a principled treatment of light trans-

port in scenes containing stochastic implicit surfaces (SIS)[Gamito

2009]—a powerful modeling framework that represents surfaces

as the zero crossings of a random field. In particular, we identify

Gaussian processes (GPs) as a useful building block. By manipulat-

ing the mean, variance, and correlation of a Gaussian field, we can

represent surfaces, media, and a new range of in-between effects

including non-exponential media with arbitrary heterogeneity and

microfacets with correlated microstructures.

Our key contribution is the introduction of new algorithms for

computing light transport in correlated disorder, addressing a long-

standing challenge in computer graphics and related fields. Stochas-

tic environments, characterized by non-uniform distributions of

geometry or particles, are found in numerous settings like tissue

[Tuchin 2000], leaves [Fukshansky et al. 1993], oceans [Kirk 1975],

reactors [Williams 1974], and molecular clouds [Boissé 1990]. Hence,

our algorithms, primarily designed for computer graphics applica-

tions, also hold potential for fields like reactor engineering and

remote sensing. Unlike traditional media, our stochastic surfaces

create oriented intersections, permitting the use of conventional BS-

DFs for medium interactions, and can also delineate discrete phases

of classical homogeneous material with stochastic boundaries.

Our rendering algorithms represent a unified and principled ap-

proach to simulating light transport in such complex scenes, but this

currently comes at a cost—both in terms of computational resources,

where they are more demanding than traditional graphics scene rep-

resentations, and in terms of the availability of closed-form results.

For example, we currently only support next-event estimation in a

limited set of circumstances, preventing us from efficiently render-

ing scenes with sparse light sources when usingmirror micro-BSDFs.

Still, we believe that the method presented here will not only pave

the way for novel applications in graphics but also extend its poten-

tial to scientific and industrial domains and we provide a reference

implementation at https://github.com/daseyb/gpis-light-transport.

2 RELATED WORK

2.1 Stochastic Implicit Surfaces in Graphics and Beyond
Stochastic implicit surfaces have been used previously in graphics

for terrain rendering [Gamito 2009] and procedural generation us-

ing e.g. Perlin noise [Ebert et al. 2003]. Here, a single realization of

the surface is rendered, leading to purely solid surfaces. We consider

the average light transport through all realizations, allowing us

to express volumetric effects as well. Using a Gaussian process as

a stochastic implicit surface has previously been used for surface

reconstruction [Martens et al. 2017; Williams and Fitzgibbon 2006],

where the GP is fitted to a set of point observations and the sur-

face extracted from zero-crossings of the GP mean. (Co)variance

in the GP has also been used to express reconstruction uncertainty

to inform e.g. robot grasping [Dragiev et al. 2011]. Additionally,

there has been a renewed interest in using GPs to quantify the un-

certainty inherent in reconstructing surfaces from point clouds via

Poisson surface reconstruction [Sellán and Jacobson 2022, 2023].

The posterior variance can then be used to e.g. optimize additional

capture locations for maximum uncertainty reduction. Our method

can use the retrieved posterior mean and covariance functions and

faithfully incorporate the covariance during rendering, visualizing

uncertainty as “fuzziness” in the surface.

2.2 Uncertainty Visualization
How to visualize uncertainty in volumetric datasets as “fuzziness”

[Fout and Ma 2012] is a problem well explored in scientific data

visualization and Brodlie et al. [2012] provide a comprehensive

review. Closest to our method, Pfaffelmoser et al. [2011] compute

“isosurface-first-crossing probabilities” (IFCPs) in Gaussian fields,

but for efficiency reasons, they limit themselves toMarkov processes.

We will show (Section 5.3) that while Markov processes make IFCPs

tractable, they produce “non-smooth” processes which do not allow

for scattering and hence cannot be used as geometry models when

the aim is to compute global illumination.

2.3 Volumetric Scene Representations
Volumetric scene representations have received increased inter-

est in recent years because they are easily differentiable and thus

amenable to inverse rendering. Methods based on Neural Radiance

Fields (NeRF) [Barron et al. 2021; Mildenhall et al. 2020; Müller et al.

2022] encode a classical (emissive) volume using a neural network

and train it from images. More recent works [Fridovich-Keil et al.

2022] drop the neural component and represent the volume entirely

with an octree. These methods have proven very effective in novel

view rendering, but struggle at scene reconstruction because hard

surfaces must be approximated with volume densities. Methods

such as NeuS [Wang et al. 2021] or NeUDF [Liu et al. 2023] instead

choose implicit surfaces as the underlying representation, where

surfaces are defined by zero-crossings of a coordinate network. The

hard surface prior leads to higher quality surface reconstructions for

solid objects, but these methods fail to encode both surface priors

and uncertainty in their representation, leading to poor results on

scenes that contain both poorly- and well-resolved detail.
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2.4 Transport in Discrete Stochastic Media
Similar to our method, techniques that compute transport through

collections of packed objects [Moon et al. 2007] or granular media

[Meng et al. 2015; Müller et al. 2016] consider the ensemble average
light transport overmany possible configurations of objects or grains.

Unlike us, they pre-compute aggregate transport — averaging not

only over different geometry configurations but also all possible

light paths connecting two points. Reusing the same aggregate

transport tables in different regions of their medium makes their

pre-computation tractable, but introduces approximations and hence

they often only opt to use it for higher-order scattering where error

is less visible. We do not rely on tabulated distributions and instead

focus on principled derivations of ensemble average light transport

in a specific class of stochastic geometry. Discrete stochastic media

have a rich history outside of graphics [Estrade et al. 2012; Lu and

Torquato 1992; Torquato and Lu 1993], and Gaussian processes

have previously been used to represent microstructures formed by

binary mixtures [Jiao et al. 2007, 2008; Torquato 1986, 2005]. To build

practical transport algorithms in such media, strong assumptions

about the chord lengths along a transect are often made, such as a

renewal [Roberts and Torquato 1999] or Markov [Pomraning 1991]

assumption, which we avoid making.

2.5 Non-exponential Radiative Transport
Similar tomethods for discrete stochastic media, theseworks assume

that the photons experience free-path lengths given by a renewal
process, where correlations “reset” after each bounce, and collisions

on different segments of a path are assumed independent, which

can lead to significant error [d’Eon 2023]. While algorithms like the

chord-length sampling [Zimmerman and Adams 1991], conditional

point sampling [Vu and Olson 2021], and 1D-point-process sam-

pling [d’Eon 2023] have improved results by providing additional

memory along a particle’s history, they are restricted to piecewise-

stationary random systems and often make strong assumptions

about the stochastic geometry. Our work transcends these limi-

tations by leveraging the properties of Gaussian processes in the

context of implicit surfaces. We show that our formalism can ex-

hibit non-exponential attenuation as well but also allows for longer-

reaching correlations across multiple segments or the entire path,

achieving higher accuracy (but requiring higher cost). Addition-

ally, work on non-exponential transport often only considers how

correlation affects free-flights, while phase functions are assumed

deterministic. In our method, appearance and transmittance are

tightly coupled.

3 BACKGROUND & NOTATION
In the following, we will present the definitions and introduce any

notation required for the derivations in Section 4. Readers familiar

with the theory are welcome to skip individual subsections.

3.1 Gaussian Processes & Fields
A Gaussian process GP(`, 𝑘)Ω is a distribution over functions 𝑓 :

Ω → R such that for any finite set of locations x1, . . . , x𝑛 =: 𝑋 ⊆ Ω,
the evaluations of the function follow an 𝑛-dimensional Gauss-

ian distribution 𝑓𝑋 ∼ N(` (𝑋 ), 𝑘 (𝑋,𝑋 )). Here, we abuse notation

slightly with ` (𝑋 ) = [` (x1), . . . , ` (x𝑛)]⊤ being an 𝑛-dimensional

mean vector and 𝑘 (𝑋,𝑋 ) an 𝑛 × 𝑛 covariance matrix, with entries

𝑘 (𝑋,𝑋 )𝑖, 𝑗 = 𝑘 (x𝑖 , x𝑗 ). These are obtained by evaluating the mean

function ` (x) : Ω → R and covariance kernel 𝑘 (x, y) : Ω × Ω → R
for each location or pair of locations in 𝑋 , respectively. When the

domain Ω is a subset of R𝑑 , we call the resulting Gaussian process

a Gaussian field [Adler and Taylor 2009]. In this work, we will only

investigate 3D Gaussian fields, but for other applications, for exam-

ple, in machine learning, 𝑑 can be very large. For a more thorough

introduction to Gaussian processes we recommend Williams and

Rasmussen [2006], whose notation we follow in this section.

3.1.1 Restrictions to sub-domains. We can restrict the input domain

of a Gaussian process (e.g. from 3D space R3 to the points xR =

{x + 𝑡𝝎 |𝑡 ∈ R} along a line) with no change in the statistics. That is,

if 𝑓 ∼ GP(`, 𝑘)R3 and 𝑔 ∼ GP(`, 𝑘)xR , then 𝑓 (xR)
𝑑
= 𝑔(xR), i.e. they

are equal in distribution. This is a useful property because we will

often look at lower dimensional “slices” of a Gaussian field, and we

can do so without having to change the mean or covariance kernel.

3.1.2 Kernel Functions. Covariance kernels can take many forms

and are the primary “design variable” for Gaussian processes. In

Fig. 2 (left) we show realizations produced by a set of common

kernels. Intuitively, the kernel prescribes how “similar” values are at

nearby points in space, and small changes to the kernel can radically

change the properties, such as differentiability, of the resulting

sample functions. The only restriction on kernels is that they must

be positive semi-definite. Kernels composed via multiplication and

addition are again valid kernels, which allows the design of complex

kernels out of simple building blocks.

We call a kernel stationary if 𝑘 (x, y) = 𝑘 (y − x), i.e. the kernel
does not change shape depending on where we evaluate it. A further

subset are isotropic kernels, 𝑘 (y − x) = 𝑘 (∥y − x∥), which only de-

pend on the distance between points. More general, non-stationary

kernels for which 𝑘 (x, y) ≠ 𝑘 (y − x) are not widely discussed in

Gaussian process literature since their theoretical analysis is diffi-

cult. That said, the statistics of real-world datasets are very rarely

truly stationary [Noack and Sethian 2022], and we will be using a

prior

Squared Exponential

Locally Periodic

posterior

Fig. 2. Gaussian processes provide a very flexible way to define sets of
functions (each being a realizations of the process), which can have wildly
different properties based on the covariance kernel of the process. On the
left we draw realizations from two prior (i.e. unconditioned) processes with
different covariance kernels. On the right, we show realizations from the cor-
responding posterior process, conditioned on the two black points (dashed
lines are the posterior means of the same hue kernels).
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non-stationary kernel to allow for spatially varying geometry and

material properties such as surface roughness.

3.1.3 Conditioned Processes. Gaussian processes can be conditioned
on observations, and the conditioned posterior process is again

Gaussian. For example, given measurements𝑚 at locations 𝐶 , we

can derive the conditioned GP(` (𝑥), 𝑘 (𝑥,𝑦) | Z𝑚) with the condition
Z𝑚 ≔ 𝑓 (𝐶) =𝑚 as

𝑓 ∼ GP(` |Z𝑚 (𝑥), 𝑘 |Z𝑚 (𝑥,𝑦)), with (1)

` |Z𝑚 (𝑥) = ` (𝑥) + 𝑘 (𝑥,𝐶)𝑘 (𝐶,𝐶)−1 (𝑚 − ` (𝐶)) (2)

𝑘 |Z𝑚 (𝑥,𝑦) = 𝑘 (𝑥, 𝑥) − 𝑘 (𝑥,𝐶)𝑘 (𝐶,𝐶)−1𝑘 (𝐶, 𝑥) (3)

Sampling from the conditioned GP then produces realizations that

pass through the values𝑚, but interpolate according to the chosen

covariance kernel in-between as shown in Fig. 2 (right). Unfortu-

nately, computing the posterior (i.e. conditioned) mean and covari-

ance involves inverting the 𝑛×𝑛 matrix 𝑘 (𝐶,𝐶), where 𝑛 = |𝐶 |. This
has O(𝑛3) time complexity and becomes intractable for large 𝑛.

3.1.4 Sampling fromGaussian Processes. Efficiently generating large

numbers of correlated samples from a Gaussian process also poses

a challenge. Samples can be drawn directly from GP(`, 𝑘) via

𝑓 (𝑋 ) = ` (𝑋 ) + 𝑘 (𝑋,𝑋 )1/2[, (4)

where [ ∼ N(0, 1) and 𝐴1/2
is the matrix square root s.t. 𝐴 =

𝐴1/2𝐴1/2
. In either case, the time complexity is O(𝑝3) with 𝑝 = |𝑋 |,

and drawing correlated samples from a Gaussian process quickly

becomes intractable for large 𝑝 . This method of directly drawing val-

ues of a sample function is called the function-space view of Gaussian

processes [Williams and Rasmussen 2006]. There are other methods

of simulating Gaussian processes, such as the weight-space view
[Rahimi and Recht 2007], but these are usually limited in the types

of processes they support (e.g. only ones with stationary kernels).

Still, the weight-space view will be valuable when validating our

method, even though we cannot use it in more complex applications.

3.1.5 Derivatives of Gaussian Processes and “Multi-Task” GPs. Due
to the linearity of the derivative operator, the derivative of a Gauss-

ian process is again a Gaussian process and takes the form

GP
′ (` (x), 𝑘 (x, y)) = GP(`′ (x), 𝑘x,y (x, y)) (5)

where 𝑘x,y (x, y) = 𝜕2𝑘 (x,y)
𝜕x𝜕y . Additionally, we can reason about the

joint value-derivative distribution[
𝑓 (𝑋 )
𝑓 ′ (𝑌 )

]
∼ N

( [
` (𝑋 )
`′ (𝑌 )

]
,

[
𝑘 (𝑋,𝑌 ) 𝑘y (𝑋,𝑌 )
𝑘x (𝑌,𝑋 ) 𝑘x,y (𝑌,𝑌 )

] )
. (6)

This will come in useful when we reason about distributions of

normals on Gaussian process implicit surfaces in Section 4, since

the normals of a GPIS are aligned with the spatial derivative of the

underlying GP.

3.2 Implicit Surfaces
An implicit surface is defined as the level-set of a scalar function 𝑓 :

Ω → R, {x ∈ Ω | 𝑓 (x) = 𝑙}. Without loss of generality, we consider

the zero level-set, where 𝑙 = 0. In addition to the surface, we can

partition Ω into inside ({𝑓 (x) < 0}) and outside ({𝑓 (x) > 0}) regions.
Computing the intersection of a ray with an implicit surface can be

0

1

2

3

4

t

Fig. 3. Each realization of a 3D Gaussian process forms a corresponding
implicit surface (top). The effect of geometry is highly non-linear, and light
transport (L) on the mean implicit surface (bottom left, prior work) is dras-
tically different to the mean light transport over all realizations of implicit
surfaces (bottom right, ours). For the mean surface, free-flights are deter-
ministic (peak, bottom left), while they form a distribution in the ground
truth transport (distribution, bottom right).

done via root-finding, i.e. finding distance 𝑠 along ray x+𝑠𝝎 such that

𝑓 (x𝑠 ) = 0, where x𝑡 = x+ 𝑡𝝎, i.e. a point which is a distance 𝑡 along

a ray (x,𝝎). Many root-finding methods are available, depending on

which properties of 𝑓 are known [Hart 1996; Stol and De Figueiredo

1997]. The intersection point x𝑠 with 𝑠 = argmin𝑡 ∈R+ 𝑓 (x𝑡 ) = 0

always depends on a particular ray and a particular implicit surface

𝑓 . When we want to make this clear, we indicate the dependence

on the surface as x𝑓𝑠 . In addition to intersections, we are often

interested in the normal n𝑠 of the surface at a point x𝑠 . Implicit

surfaces make it easy to calculate the normal vector as n𝑠 = ∇𝑓 (x𝑠 ),
where ∇ computes the normalized gradient

∇𝑓 (x𝑠 )/∥∇𝑓 (x𝑠 ) ∥. Just as
before, we sometimes will highlight the dependence of the normal

at the intersection on a particular implicit surface as n𝑓𝑠 .

3.2.1 Stochastic Implicit Surfaces. A stochastic implicit surface (SIS)

is the distribution of level sets of a stochastic process. In this paper,

our main focus is on Gaussian process implicit surfaces (GPIS), where
the stochastic process is Gaussian. Each realization 𝑓 ∼ GP of the

process generates an implicit surface at the zero level set 𝑓 (x) = 0.

Fig. 4. We can solve the recursive integral formulation of light transport
in Eq. (7) in an implicit surface 𝑓 by intersecting rays with the surface,
computing the normal at the intersection point, and picking a scattering
direction according to the BSDF (left). Finding the first intersection point
requires us to find the first zero crossing of the implicit surface evaluated
along the ray (right).
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naïve

classical implict surface rendering

ours
intersect cond. sample 1D & intersect

sample 3D

sample 1D

cond. sample 1D & intersect

Fig. 5. We show the difference between the “naive” method in Eq. (8) (top), which requires global realization sampling, and the progressive sampling method
we present in Eq. (14), which only samples realizations along path segments as needed (bottom). Both compute the ground truth ensemble average light
transport in a given GPIS (` shown on the left). In the naive method, tracing is simple since each path sees a deterministic 𝑓 (red: inside, blue: outside, black:
zero-level set), but sampling large numbers of correlated samples from a general Gaussian process is prohibitively expensive even for modest resolutions
(scaling with O(𝑛9 ) where 𝑛 is the discretization resolution). In our method, we only ever sample 1D slices of the process, which scales with O(𝑚3 ) , where
𝑚 is the number of steps taken along each ray. While still expensive compared to classical rendering techniques, it makes it feasible, for the first time, to
compute GPIS light transport in a principled manner.

In Fig. 3, we show how the deterministic intersection distance and

normal in implicit surface rendering turn into distributions when

considering SISes.

3.3 Light Transport
We write the surface rendering equation [Kajiya 1986] for light

transport in a scene defined by the implicit surface 𝑓 as

𝐿𝑓 (x,𝝎) =
∫
𝑆2

𝜌 (x𝑓𝑠 )𝐿𝑓 (x
𝑓
𝑠 ,𝝎

𝑓
𝑠 ) d𝝎𝑠 (7)

where x𝑓𝑠 and n𝑓𝑠 are defined as in Section 3.2 and, for brevity, we

use the shorthand 𝜌 (x𝑠 ) B 𝜌 (x𝑠 ,−𝝎,𝝎𝑠 , n𝑠 ) |n𝑠 ·𝝎𝑠 | for the cosine-
weighted BSDF of the implicit surface, which we assume to be a

deterministic function of position x𝑠 , normal n𝑠 and incoming and

outgoing directions 𝝎𝑠 ,−𝝎 respectively. We illustrate this form of

the rendering equation in Fig. 4.

4 ENSEMBLE-AVERAGED LIGHT TRANSPORT IN GPISES
The radiance 𝐿𝑓 introduced in the previous section describes light

transport for a fixed implicit surface 𝑓 (Eq. (7)). We now consider

the case when 𝑓 is a realization of a Gaussian process (a GPIS), and

will derive methods for computing the average transport over all

realizations. Formally, we investigate the ensemble averaged light

transport over all realizations 𝑓 of the Gaussian processGP(`, 𝑘 | Z ),

⟨𝐿𝑓 (x,𝝎)⟩Z =

∫
GP

𝐿𝑓 (x,𝝎) d𝛾`,𝑘 (𝑓 | Z ), (8)

where 𝛾`,𝑘 (𝑓 | Z ) is the classical Wiener measure [Taylor 2006,

Ch. 16] of 𝑓 with respect to the conditioned GP(`, 𝑘 | Z ), i.e. the
probability density of sampling 𝑓 ∼ GP(`, 𝑘 | Z ). We will use the

condition Z as an “editing” tool in Section 6, since it allows us to

only consider realizations that, e.g., pass through a certain point in

space. For brevity, the dependency on `, 𝑘 is made implicit going

forward. We can form a straightforward Monte Carlo of Eq. (8) via

⟨𝐿𝑓 (x,𝝎)⟩Z ≈
1

𝑁

𝑁∑︁
𝑗=1

𝐿𝑓𝑗 (x,𝝎), 𝑓𝑗 ∼ GP(`, 𝑘 | Z ), (9)

where we simply average the light transport across 𝑁 independent

realizations of the Gaussian process. Within each realization, 𝐿𝑓𝑗

may in turn be estimated with Monte Carlo using e.g. path tracing.

While Eq. (9) produces correct results on average, it is wholly

impractical: For each sample, an entire 3D realization 𝑓𝑗 must be

constructed. If the GPIS is discretized into a volume of sidelength

O(𝑛), constructing each realization takes O(𝑛9) time, making it

infeasible. In the following we will derive an alternative form of

Eq. (8) that interweaves the Monte Carlo rendering process with

the random sampling of realizations. As a result, we will be able to

construct realizations in a “just in time” fashion, only sampling the

parts of 𝑓 that are required to continue the light transport path.

Explicit delta free-flights in fixed 𝑓 . As a first step we make it

explicit that free-flight distributions are delta functions in fixed

implicit surfaces, rewriting Eq. (7) as

𝐿𝑓 (x,𝝎) =
∫ ∞

0

∬
S2

𝜌 (x𝑡 )𝛿 𝑓 (x𝑡 , n)I𝑓(0, 𝑡) 𝐿𝑓 (x𝑡 ,𝝎𝑡 ) d𝝎𝑡 dn d𝑡,

(10)

where 𝛿 𝑓 (x𝑡 , n) = 𝛿 (𝑓 (x𝑡 ) − 0) · 𝛿 (∇𝑓 (x𝑡 ) − n) and

I
𝑓(0, 𝑡) =

{
1 ∀𝑠 ∈ (0, 𝑡) : 𝑓 (x𝑠 ) > 0

0 otherwise

. (11)

Intuitively, 𝛿 𝑓 (x𝑡 , n)I𝑓(0, 𝑡) is non-zero when x𝑡 is the intersection
point of the ray in realization 𝑓 and n is the normal at the intersec-

tion point. Expanding 𝐿𝑓 as defined in Eq. (10) and then pulling the

averaging over GP realizations into the integrals over intersection

ACM Trans. Graph., Vol. 43, No. 4, Article 112. Publication date: July 2024.



112:6 • Dario Seyb, Eugene d’Eon, Benedikt Bitterli, and Wojciech Jarosz

global renewal+renewal

Fig. 6. We show the conditional probability of being inside a surface (blue:
low, red: high) for every point in space, after a collision at x𝑠 . The ground
truth (left, our Global model) requires segment correlations. This makes
sampling free-flights after a collision expensive but preserves information
along thewhole path. The Renewalmodel (middle) only remembers the value
of the process at path vertices. This is reminiscent of the distinction between
“free-space” and “particle” path vertices in non-exponential transport [Bitterli
et al. 2018] and discards any knowledge about the incoming segment. The
Renewal+ model (right) additional remembers the gradient at path vertices,
producing results much closer to the ground truth with very little additional
cost over the Renewal model.

distance, normal, and exit direction allows us to rewrite Eq. (8) as

⟨𝐿𝑓 (x,𝝎)⟩Z =∫ ∞

0

∬
S2

𝜌 (x𝑡 )
〈
𝛿 𝑓 (x𝑡 , n)I𝑓(0, 𝑡) 𝐿𝑓 (x𝑡 ,𝝎𝑡 )

〉
Z
d𝝎𝑡 dn d𝑡 . (12)

So far, we have gained little — the ensemble average on the right-

hand side is still over full 3D realizations 𝑓 .

From delta functions to conditioned ensembles. Using a relation we

derive in Section 1.1.2 of the supplemental, we can pull the delta

function out of the ensemble average — i.e. instead of “filtering”

realizations after sampling, we only average over realizations having

the required normal and zero-crossing in the first place, giving us

⟨𝐿𝑓 (x,𝝎)⟩Z =∫ ∞

0

∬
S2

𝜌 (x𝑡 )𝛾x𝑡 (0, n | Z )
〈
I
𝑓(0, 𝑡) 𝐿𝑓 (x𝑡 ,𝝎𝑡 )

〉
Z∧Z𝛿

d𝝎𝑡 dn d𝑡,

(13)

where the condition Z𝛿 B (𝑓 (x𝑡 ) = 0 ∧ ∇𝑓 (x𝑡 ) = n) restricts
the realizations inside the ensemble average to the ones where the

delta function is non-zero and 𝛾x𝑡 (0, n | Z ) accounts for the density
of sampling such realizations. This already constricts the space of

realizations we need to consider in the ensemble average on the

right-hand side as we move along the path.

Splitting realizations and progressive sampling. Finally, we note
that I

𝑓(0, 𝑡) only depends on the 1D restriction of 𝑓 to the ray segment

(x, x𝑡 ). Gaussian processes, being closed under conditioning, allow

us to decompose sampling 𝑓 into two parts: Sampling the values

𝑓x,x𝑡 along the ray segment and then sampling 𝑓 over the remainder

of the domain. As long as we condition the second step on Z (x,x𝑡 ) ,
i.e. the results of the first one, the final distribution is the same as

if we had sampled all parts of the domain at the same time. Again,

using a relation shown in Section 1.1.3 of the supplemental we split

global renewal renewal+

Fig. 7. We show a scene rendered with our range of memory models. Em-
pirically, we found that the Renewal+ model (right) preserves ground truth
appearance (left) much better than the Renewal model (middle).

the ensemble average on the right-hand side in two, giving us

⟨𝐿𝑓 (x,𝝎)⟩Z =

∫ ∞

0

∬
S2

𝜌 (x𝑡 )𝛾x𝑡 (0, n | Z )〈
I
𝑓(0, 𝑡)

〈
𝐿𝑓 (x𝑡 ,𝝎𝑡 )

〉
Z∧Z𝛿∧Z (x,x𝑡 )

〉 (x,x𝑡 )
Z∧Z𝛿

d𝝎𝑡 dn d𝑡, (14)

where ⟨·⟩ (x,x𝑡 )
Z

represents the conditioned average over realization

restricted to a path segment. Eq. (14) is vastly more efficient to

estimate, as at each level of recursion, realizations only need to

be evaluated on path segments (x, x𝑡 ) and not the entire scene,

reducing the cost to O(𝑚3), where𝑚 is now the number of steps

taken along a ray segment (see Fig. 5). Ensemble averaging is done

for each path segment individually; however, Eq. (14) is exact, and

no approximations are made. This is made possible because each

subsequent segment on the path is conditioned on the observed

values of the realization seen on all prior segments, ensuring a

globally consistent view. However, the cost of sampling realizations

on later segments increases as more and more conditions are added.

4.1 Memory Models
While sampling from a 1D process (14) is wildly more practical than

sampling global 3D realizations (8), conditioning subsequent path

segments on all values sampled along prior segments is still com-

putationally intensive. To enable a more practical implementation,

we introduce the concept of memory models, which “forget” some

of the conditioning on prior segments in Eq. (14). This trades off

computational cost for approximation error. Effectively, we replace

the list of conditions Z ′ := Z ∧Z𝛿 ∧Z (x,x𝑡 ) on the recursive ensemble

average in Eq. (14) by a simpler form. Figure 6 shows a didactic vi-

sualization of the different models we present in this section. Many

more are possible, but we restrict ourselves to the most interesting

subset.

4.1.1 The Global-𝑛 memory model. The Global-𝑛 model conditions

each segment on only the 𝑛 prior segments Z ′
𝐺𝑛 ≔ Z𝑘−𝑛 ∧ . . . ∧ Z𝑘 ,

where each Z𝑘 is Z𝛿 ∧ Z (x,x𝑡 ) of Eq. (14) for the 𝑘-th path segment.

In the limit, for 𝑛 = ∞, the ground truth model is recovered. While

still expensive, this model allows setting an upper bound on the

evaluation cost of Eq. (14) that does not grow arbitrarily with the

length of the light path.

4.1.2 The Renewal memory model. On the other end of the spec-

trum, the Renewal model retains only minimal state, i.e. that a sur-

face must be present at x𝑘 on adjacent segments, meaning Z ′
𝑅
(𝑓 ) ≔
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(𝑓 (x𝑘 ) = 0). This is analogous to models of non-exponential media

[Bitterli et al. 2018; d’Eon 2018; Jarabo et al. 2018], which remember

correlations only up to the preceding path vertex. This semi-Markov

model “jumps” to a different realization at each path vertex.

4.1.3 The Renewal+ memory model. D’Eon [2023] showed that

a renewal approximation in volumes with stochastic density can

introduce significant errors. Our Renewal+model aims to reduce this

error by additionally remembering the previous normal n𝑘 at x𝑘 , i.e.
we condition on Z ′

𝑅+ (𝑓 ) ≔ Z ′
𝑅
(𝑓 ) ∧

(
∇𝑓 (x𝑘 ) = n𝑘

)
. This enforces

gradient consistency across segment realizations, which reduces

approximation error compared to the Renewal model significantly

(see Fig. 7) while being much more tractable than the Global model.

Conditioning on higher order derivatives may be interesting to

explore in future work.

Note that both the Renewal and Renewal+ memory models only

retain information about the last collision. We leave the question of

whether keeping additional vertices, similar to the Global-n model,

would improve results for future work, since these and other mem-

ory models are trivial to experiment with.

4.2 Progressive sampling via function-space GPs
To round out this section, we present a method for rendering GPIS

light transport that we will use to produce subsequent images and

other results. This method supports fully non-stationary covariance

kernels (see Section 6) and any choice of memory model. For an

alternative weight-space implementation that supports only station-

ary kernels but can serve as a “ground truth”, see Section 3 of the

supplemental.

We can write a one-sample Monte Carlo estimator of Eq. (14) as

�⟨𝐿𝑖 (xu,𝝎)⟩Z =
𝜌 (x𝑡 )Γ(𝑡, n | Z )
𝑝 (𝑡, n,𝝎𝑡 , 𝑓(x,x𝑡 ) )

�⟨𝐿𝑖 (x𝑡 ,𝝎𝑡 )⟩Z ′ , (15)

𝑡, n,𝝎𝑡 , 𝑓(x,x𝑡 ) ∼ 𝑝 (𝑡, n,𝝎𝑡 , 𝑓(x,x𝑡 ) ) (16)

ALGORITHM 1: Simple light transport in a GPIS

function 𝐿 (®𝑟 | Z ) : color
(𝑡, n, Z ′ ) ← nextHit(®𝑟 | Z )
return 𝐿𝑒 (®𝑟, 𝑡, n | Z ′ ) + 𝐿𝑟 (®𝑟, 𝑡, n | Z ′ )

function 𝐿𝑟 (®𝑟, 𝑡, n | Z ) : color
(𝝎′, 𝑝𝝎′ ) ← sampleDirection(®𝑟, 𝑡 | Z )
𝜌 ← evalBSDF(®𝑟 (𝑡 ), ®𝑟 .𝝎,𝝎′, Z )
return 𝜌 · (n(®𝑟, 𝑡, Z ) .𝝎′ )/𝑝𝝎′ · 𝐿 (Ray(®𝑟 (𝑡 ),𝝎′ ), Z )

function nextHit(®𝑟 | Z ) : (𝑡, n, Z ′ )
𝑓 ← sampleRealization(®𝑟 | Z )

//Sample a 1D realization along the ray.

𝑡 ← argmin𝑠 𝑓 (𝑠 ) ≤ 0 //Find first zero crossing.

n← sampleNormal(®𝑟, 𝑡 | Z ∧ 𝑓 )
//Sample normal at intersection point.

Z ′ ← M(Z ∧ 𝑓 ∧ n) //Filter state based on memory

model.

return (𝑡, n, Z ′ )

-5

Fig. 8. We first determine a conservative envelope around the GPIS based on
the point-wise probability of being inside the surface. We then place 𝑛 (here
𝑛 = 4) sample locations along the ray segment at fixed distances Δ𝑠 based
on the covariance kernel. If the segment is longer than 𝑛 · Δ𝑠 , we stop short,
effectively inserting a “null-collision” (grey outline), and continue using
a new set of conditioned samples. Once an interpolation of the discrete
samples crosses 0 we have found the intersection point x𝑡 (black outline).
We then sample a normal n𝑡 and a direction from the micro BSDF and
continue in the scattered direction 𝝎𝑡 .

where, 𝑝 (𝑡, n,𝝎𝑡 , 𝑓(x,x𝑡 ) ) is a joint probability density of sampling

intersection distance 𝑡 , normal at the intersection point n, outgoing
direction 𝝎𝑡 and a 1D realization 𝑓(x,x𝑡 ) that has positive values
along the line segment (x, x𝑡 ) and a zero crossing at 𝑡 . The question
now is whether we can choose 𝑝 ∼ 𝜌 (x𝑡 )Γ(𝑡, n | Z ). This would both
reduce variance, due to importance sampling part of the integrand,

and also save us from having to compute Γ(𝑡, n | Z ), for which
we don’t have an analytic expression. To achieve this, we carefully

consider the order of sampling the quantities we need as follows

(1) Sample a 1D realization along the ray 𝑓(x,x∞ ) ∼ GP(x,x∞ ) |Z .
(2) Find the intersection distance 𝑡 = argmin𝑠∈ (0,∞) 𝑓(x,x𝑠 ) = 0.

(now 𝑓(x,x𝑡 ) ∼ GP
+
(x,x∞ ) |Z as required).

(3) Sample a normal n ∼ GP
∇
x𝑡 |Z∧𝑓(x,x𝑡 )

(4) Sample the BSDF 𝝎𝑡 ∼ 𝜌 (x𝑡 )
This perfectly importance samples the factor in front of the re-

cursive term in Eq. (15). Afterward, we can recursively compute�⟨𝐿𝑖 (x𝑡 ,𝝎𝑡 )⟩Z ′ in exactly the same way, and we continue until we hit

a light source or exit the scene. These steps are reflected in Alg. 1.

4.2.1 Practical considerations. Still, the list of steps does not tell
the whole story. The main issue lies in sampling 𝑓(x,x∞ ) . Recall that
this is a function, i.e. an uncountably infinite set of values. Using

function space sampling, we can only sample a finite set of𝑚 values,

and the cost grows with O(𝑚3). Hence, we have to approximate

𝑓(x,x∞ ) somehow using a finite (and hopefully small) number of

samples. Luckily, the processes we consider are smooth, after all we

require continuity and second-order differentiability. This means

that sample functions should be well approximated by interpolation

of a relatively small number of samples. The second issue is that

𝑓(x,x∞ ) is defined over the positive real number line, i.e. it contains

all points along the ray to infinity. Hence even when discretizing

the number line, we would still need to sample an infinite number

of values. We solve this with a two-layer strategy: First, we derive

appropriate scene bounds. Then, we split the ray into segments

with a fixed number of sample points, spaced appropriately for the

given covariance function, and progressively sample the realization

for each segment, much like we progressively sample realizations

between path vertices. This process is visualized in Fig. 8 and we
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GPIS
Classical

GPIS
Surface-type GPIS Volume-type GPIS

Classical

vNDF transmittance

Fig. 9. Here, we explore two extremes of the appearance spectrum that our method supports: microfacet surfaces (left) and participating media (right). We can
match classical results by carefully controlling the statistics of the realizations we generate (insets top), and by deriving the central quantities for each in our
model (insets bottom, vNDF for microfacets and transmittance for participating media). Our method easily incorporates multiple scattering and allows freely
choosing the BSDF of the microgeometry. The micro-bsdf of the sphere above is a mirror, while the pink mesh surrounding it is diffuse at the microscale. This
does not change the vNDF/transmittance, but has a large impact on the resulting appearance.

provide details on each individual substep in Section 3.2 of the

supplemental.

Note that despite the seemingly intricate procedure described in

this section, our method is not difficult to implement, assuming one

has access to a path tracer andmethods to sample conditioned values

from a Gaussian process—which are available in many libraries and

easy to implement from scratch. Notably, we did not have to change

any of the core integrator code—a GPIS is implemented as a medium

with a special phase function and free-flight distance sampling

routine; the data for mean and covariance is accessed through the

same volume data API that is used for heterogeneous density in

classical media; we expand our renderer’s existing architecture for

non-exponential transport to keep track of the path history.

5 THE APPEARANCE SPACE OF GPISES
Now that we have a theory that allows for representing and render-

ing GPIS light transport, the remaining question is how to obtain

such GPISes in the first place.

Fig. 10. At the top we show example realizations of Gaussian processes with
different covariance kernels, all having the samemicrofacet roughness𝛼 . On
the bottom are renders of the ensemble average light transport. Our method
makes it trivial to explore light transport in a range of microgeometry
without having to generate, store, and process large amounts of data.

Much like traditional scene representations, a GPIS can be manu-

ally authored by an artist, either by explicitly specifying its parame-

ters (Section 6.2.1) or implicitly by constraining the GPIS at select

points (Section 6.2.2). GPISes may also be combined via CSG opera-

tions (Section 6.2.3). The novel degrees of freedom in a GPIS allow to

simultaneously specify a surface as well as its "fuzziness"/"certainty",

unlocking a new spectrum of authoring workflows.

Beyond artistic control, we show how to render GPISes with

parameters derived from data, for example via stochastic Poisson

surface reconstruction (Section 6.3). Because GPISes can express

correlations at the micro- and mesoscale, they are also a useful tool

for level-of-detail, and we show how to obtain GPISes that represent

prefiltered implicit surfaces at any desired resolution (Section 6.4).

Inherent to GPISes is the averaging over stochastic microgeome-

try, and as such they naturally subsume many classical stochastic

appearance models. In the following subsections, we focus on two in

particular that have seen much popularity: Microfacet surfaces, and

participating media. The microgeometry assumed by either of these

models can be naturally represented by a GPIS (see Fig. 9). However,

because GPISes make fewer approximating assumptions, we can ac-

tually achieve more accurate renderings of the appearance described

by these classical models, by incorporating correlations along paths

through the microgeometry. Beyond making connections to existing

appearance models, our method allows us to easily experiment with

new microgeometry, and it provides a ground truth against which

analytic approximations may be compared (see Fig. 10).

5.1 Joint distribution of free-flight distances and normals
The appearance of a microfacet surface is characterized by a normal

distribution, a microfacet BSDF, and a shadowing-and-masking

term. Similarly, a participating medium is described by its phase

function and the transmittance function (or equivalently, its free-

flight distribution). Though obscured by the rigorous treatment of

correlations, these quantities also appear in our recursive GPIS light

transport formulation, which we make explicit in the following.
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Surface-type GPIS Microfacet surface

env. map

Fig. 11. An appropriately chosen surface-type GPIS can match microfacet
models. We show renderings of a scene lit by an environment map, con-
taining a surface-type GPIS with mirror microfacets (left) and a Beckmann
microfacet model (right) with roughness matched via Eq. (20). The insets
show the vNDF for a ray hitting the surface at a grazing angle, as com-
puted by our method and derived from microfacet theory. For the relatively
smooth surface shown here, the Smith approximation is close to the ground
truth computed with our method as expected [Bourlier et al. 2000].

Under the Renewal+ and Renewal models, Eq. (14) can be sim-

plified further, as ⟨𝐿(x𝑡 ,𝝎𝑡 )⟩Z ,Z ′ no longer depends on a specific

realization 𝑓(x,x𝑡 ) along the incoming ray segment. This yields

⟨𝐿(x,𝝎)⟩Z ≈∫ ∞

0

∬
𝜌 (x𝑡 ) Γ(𝑡, n | Z )︸      ︷︷      ︸

≔𝛾x𝑡 (0,n |Z )T(x𝑡 |Z )
Joint probability density of

normal n and free-flight distance 𝑡

⟨𝐿(x𝑡 ,𝝎𝑡 )⟩Z∧Z ′ d𝝎𝑡 dn d𝑡, (17)

with

T(x𝑡 | Z ) =
∫
GP(x,x𝑡 ) |Z∧Z𝛿

I
𝑓(0, 𝑡) d𝛾 (𝑓(x,x𝑡 ) |Z ∧ Z𝛿 )

= 𝑃 (𝑓(x,x𝑡 ) > 0 | Z ∧ Z𝛿 )
(18)

being the probability of sampling any realization 𝑓(x,x𝑡 ) > 0 condi-

tioned on Z ∧ 𝑓 (x𝑡 ) = 0 ∧ ∇𝑓 (x𝑡 ) = n. We provide a step-by-step

derivation in Section 1.3 of the supplemental.

The “GPIS density” Γ(𝑡, n | Z ) allows us to connect our method to

participating media and microfacet surfaces, and derive parameters

for our model to match their appearance.

5.2 Surface-type GPISes
Microfacet surfaces, much like GPISes, describe surfaces as realiza-

tions of a stochastic process—in fact, the popular Beckmann model

[Beckmann 1965] even assumes Gaussian process height fields. A

crucial microsurface property is the distribution of visible normals
(vNDF) 𝐷𝑣 (n | 𝝎), which describes the distribution of surface nor-

mals visible from direction 𝝎. We can derive a vNDF directly from

the GPIS density as

𝐷𝑣 (n | 𝝎) =
∫ ∞

0

Γ(𝑡, n | 𝝎, Z ) d𝑡 . (19)

This gives the vNDF for any GPIS. To match microfacet theory, we

can explicitly induce a heightfield surface via a linearly varying
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Fig. 12. We show the difference between the vNDF computed by our method
and the vNDF predicted for a Beckmann surface with Smith shadowing
and masking at various incident ray angles (left to right) and for different
covariance kernels (top vs. bottom) for a relatively rough surface. As expected
[Bourlier et al. 2000], at non-grazing angles, the Smith approximation is
excellent, independent of the covariance kernel, whereas at grazing angles
non-integrable covariance kernels (such as the rational quadratic kernel
shown here) induce significantly different vNDFs.

mean along the z-axis ` (p) = ` (p𝑧) and a strongly anisotropic

kernel 𝑘 (p, q) = 𝑘 (p𝑥,𝑦, q𝑥,𝑦) that induces complete correlation

along the z-axis. What remains is how to determine the parameters

of the covariance kernel to match a given microfacet model.

Classical microfacet theory disregards certain correlations [Smith

1967], making the vNDF only depend on 𝛼 , the “roughness” of the

surface, which we can derive for any kernel [Pharr et al. 2016] as

𝛼 =
√︁
−2𝑘′′ (0). (20)

As long as the kernel is twice differentiable, we can easily find a

GPIS that matches a given microfacet surface by (1) aligning the

gradient of the mean with the macro surface normal, and (2) picking

a kernel with perfect correlation along themacro surface normal and

𝑘′′ (0) = −𝛼2/2. In Fig. 11, we verify that our method can produce

results consistent with microfacet theory by rendering a heightfield

GPIS matched to a classical microfacet surface via Eq. (20). Note

that without the Smith approximation to shadowing and masking,

the vNDF depends on the full shape of the covariance kernel. In

our method, we do not apply this approximation and we can show

(Fig. 12) that, while the Smith approximation is excellent in some

scenarios, for grazing angles and certain kernels, taking correlations

into account does matter.

Fig. 13. As we move from the heightfields produced by strongly anisotropic
covariance kernels (left) towards isotropic ones (right), the NDF (inset, blue)
goes from the one predicted for Beckmann surfaces (dashed orange) towards
a von-Mises-Fisher distribution, as discussed by d’Eon [2021].
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single realization

classical renewal renewal+ global
ground truth

(weight-space)

Fig. 14. We demonstrate the opposition effect with a single realization
drawn from a Gaussian Process (bottom). The “shadow hiding” phenomenon
is very visible in the image center. The top row shows different methods
of computing the ensemble average light transport: Classical microfacet
theory with uncorrelated shadowing andmasking (top left) does not produce
the opposition effect at all. Our memory models produce results closer to
the ground truth as we increase the types of correlation we keep track of:
Renewal model loses energy due to the lack of gradient continuity between
“bounce” realizations; Renewal+ captures some backward scattering, but its
conditioning is not enough to ensure perfect correlation along backward
scattering paths; and the Global model near perfectly reproduces the bright
halo around the observer’s shadow

NDFs for non-heightfield surfaces. Our theory is not restricted

to heightfields, and we can model non-heightfield surfaces and

their corresponding (v)NDFs by relaxing the correlation constraint

along the z-axis. In Fig. 13, we show empirically that these start to

approach prior results for aggregate NDFs [d’Eon 2021]. Intuitively,

this is explained by examining individual realizations, which start

to resemble porous surfaces rather than bumpy heightfields.

Opposition effect. Rough surfaces lit from the viewing direction

exhibit the “opposition effect”, a noticeable brightening of the sur-

face around the observer’s shadow (Fig. 14). The main contributing

factor to this effect—“shadow hiding”—is not captured in shadow-

ing/masking terms derived from Smith theory, but can be repro-

duced in varying degrees of accuracy using our theory, depending

on the memory model. The Renewal+ model provides a reasonable

performance/accuracy trade-off.

5.3 Volume-type GPISes
The central quantity in volumetric transport is the free-flight dis-

tribution. We can derive it for our model by integrating the GPIS

density over the sphere of all possible normals at the intersection

point 𝑥𝑡 :

Γ(𝑡 | Z ) =
∫
𝑆2

Γ(𝑡, n | Z ) dn. (21)

Γ(𝑡 | Z ) represents the probability density of finding the first zero

crossing of the GPIS at distance 𝑡 . Assuming the Renewal model, it is

sufficient to examine the case when Z𝑐 B 𝑓 (x) = 0 (i.e. the current

ray starts on a zero crossing, e.g. after leaving a scattering event)

and Z𝑢 B 𝑓 (x) > 0 (i.e. the ray origin is uncorrelated with the GPIS

e.g. starting at the camera or leaving a non-GPIS surface). This is

analogous to recent work in non-exponential transport[Bitterli et al.

2018], and the same properties apply: Γ(𝑡 | Z𝑐 ) can be derived from

Γ(𝑡 | Z𝑢 ) and vice-versa (see Fig. 15).

5.3.1 Matching participating media. Just as in microfacet theory,

disregarding correlations along light paths allows us to describe a

medium by a single number, its density 𝜎𝑡 , i.e. a value indicating

how many particles occupy a certain region of space. As before, we

want to derive the parameters, i.e. 𝜎𝑡 , of this simplified classical

model from the parameters of a GPIS and vice versa. Since volume-

type GPISes have not been studied much in graphics literature, this

requires us to pull in knowledge from a wider range of literature on

stochastic processes. There, the free-flight distributions Γ(𝑡 | Z𝑢/𝑐 )
are known as the first-passage-time (for Z𝑢 ) and the excursion-time
density (for Z𝑐 ). The first-passage-time is the “time” (in our case

distance) at which a realization of a stochastic process first crosses a

particular level. The excursion time is then the time that a realization

of a stochastic process takes to return to the given level for the first

time. This corresponds to the distance from one intersection point

to another. In the Gaussian process case, it is known that excursion

times are well-defined only for smooth processes [Bray et al. 2013;

Torquato and Lu 1993]. A process is smooth iff the Taylor expansion

of𝑘 (x, y) has the form𝑘 (x, y) = 1−𝑎∥x−y∥𝛼+O(∥x−y∥𝛼 ), with𝛼 =

2 [Bray et al. 2013]. For non-smooth processes—like the Ornstein-

Uhlenbeck (OU) process and Brownian motion—the excursion time

density is simply a delta function at 0. For us this means that any

photon leaving a scatterer would scatter again immediately, no

progress is made and no light transport is possible. Hence we have

to limit ourselves to smooth processes. Unfortunately, it is also

true that only Markov processes have known analytic solutions for

first-passage times [Buonocore et al. 1987]. Since the only Gaussian

Markov process is the OU process, which is not smooth, there are

0 2 4 6 8
0

2

Γ(t | ζu)

0 2 4 6 8

Γ(t | ζc)

Fig. 15. Left: Realizations sampled along rays starting in free-space. The
resulting distribution of zero crossing distances is the first-passage time
density and corresponds to Γ (𝑡 | Z𝑐 ) . Right: Realizations sampled along rays
starting at a GPIS intersection. The distribution of zero crossing distances
here is the excursion time density and correspond to Γ (𝑡 | Z𝑐 ) . Realizations
are sampled from a GP with squared exponential covariance and zero mean.
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Fig. 16. We numerically compute transmittance using RIND (dashed) for
a range of homogeneous GPISes, allowing us to derive the extinction coef-
ficient 𝜎𝑡 = 𝑏𝑘 of the closest exponential medium (solid black). Based on
the differences between the dashed and solid lines, we can confirm that
processes with a higher mean ` and integrable kernels produce more expo-
nential first-passage times.

no Gaussian processes for which we (1) can hope to derive a non-

zero particle/particle free-flight density and (2) for which such a

free-flight density has a known analytic form. That said, it is well

known that for many covariance kernels, the tail behaviour of the
first-passage time is exponential. In particular, we can write the

persistence exponent 𝑏𝑘 [Dembo and Mukherjee 2017] for a given

kernel 𝑘 as

𝑏𝑘 ≔ − lim

𝑡→∞
1

𝑡
log Γ(𝑡 | Z𝑢 ), (22)

with 𝑏𝑘 ∈ [0,∞] as long as 𝑘 is non-negative and stationary. Note

that if 𝑏𝑘 = 0, we have longer-than-exponential tails for the first-

passage time. This is the case iff

∫ ∞
0

𝑘 (𝑡) d𝑡 = ∞, i.e. when the covari-
ance kernel is non-integrable. In these cases, the decay rate is often

of the form 𝑡−𝛼 , with 𝛼 ∈ (0, 1]. There are strong similarities to the

Davies model of non-exponential transmittance [Davis and Mineev-

Weinstein 2011], which Bitterli et al. [2018] previously imported to

graphics, where the authors derive longer-than-exponential tails

in cases where the random fluctuations of the medium are “self-

similar”. Now, matching 𝜎𝑡 to the persistence exponent 𝑏𝑘 produces

Volume-type GPISVolume-type GPIS Classical mediumClassical medium

Fig. 17. Here we show results for an index-matched homogeneous medium
in a “wedge” (thicker on the left, thinner on the right), set in front of a
checkerboard, and lit from above. On the left we render a volume-type GPIS
with parameters based on the persistence exponent match discussed in this
section and a mirror BSDF. On the right, we render the classical medium
with the 𝜎𝑡 we used to match the GPIS and an isotropic phase function.

GPIS
classical

mirror/isotropic lambertian

Fig. 18. Isotropic volume-type GPISes induce phase functions that approach
ones predicted by prior work. For a GPIS with a mirror BSDF, we recover a
close-to-isotropic phase function (left), whereas for a GPIS with a diffuse
BSDF we approach the phase function for Lambertian spherical scatterers
described by [d’Eon 2021] (right).

the classical medium “closest” to a given GPIS, which is what we

have been looking for. While there are no known analytical results

to compute 𝑏𝑘 , Lindgren et al. [2020] suggest to derive the persis-

tence exponent from numerical first-passage time results computed

via their method RIND. RIND is efficient and accurate, and we can

easily fit an exponential to the tail of the numerical results as shown

in Fig. 16. In Fig. 17 we show renders using parameters computed

with this method to verify its use in practice.

Phase function reproduction. Additionally, we can show that the

phase functions in our volume-type GPISes behave as expected. In

particular, as we increase themean (making themediummore dilute)

and decrease the length scale (reducing the size and correlation of

particles), we expect the phase function to be increasingly isotropic

for a GPIS with a mirror micro BSDF. Applying a diffuse micro-

BSDF should reproduce the phase function for Lambertian scatterers.

Figure 18 shows that this is the case. We pose that the dip in the

forward scattering direction for the mirror BSDF (left) is due to our

ray marching based intersection routine being more likely to miss

intersections at grazing angles.

5.4 The in-betweens & mesoscale geometry
We have discussed two extreme ends of the appearance spectrum

that we can cover with GPIS, but for both of them, specialized

methods exist which perform extremely well compared to our more

general method. The value that we see in our method is that it not

only does not require an a priori choice between either end of the

spectrum, but that it can also represent cases that don’t fit neatly

into either category. Particularly interesting is that we can repre-

sentmesoscale detail easily, which is something that other geometry

models struggle with. We define mesoscale detail as geometry that

is fine enough to require relatively large amounts of storage to repre-

sent explicitly, while being large scale enough that the assumptions

necessary for efficient microscale models break down. This covers,

for example, tree bark and leaves, grains, and fibers or fur, and we

show some didactic examples in Fig. 10. We leave the further in-

vestigation to future work, but we believe that at mesoscale level

uncertainty, our representation behaves much like certain classes
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Fig. 19. Using the model we present in Section 6.1 we can spatially vary
all of the parameters we have identified as important to the appearance in
Section 5. As shown here, this allows us to represent these different types of
appearance not only in the same scene, but in the same geometry primitive,
with smooth transitions between them.

of anisotropic media [Jakob et al. 2010]. In Gaussian process terms,

mesoscale detail appears when the variance of the process is on the

same scale as variations in the mean. For example, in Fig. 10, the

mean shape has an extent of 50 units in each direction, while the

variance is 25 for all examples.

6 A NON-STATIONARY GPIS MODEL FOR
ACQUISITION & CREATION

In this section, we present a concrete, flexible model that covers a

wide range of practical use cases. In particular this model supports

the whole range of volume- to surface-type GPIS discussed in Sec-

tion 5 as well as stochastic mesoscale detail. We restrict ourselves

to non-stationary Gaussian process implicit surfaces with a parame-

terized prior mean function and covariance kernel with parameters

Φ, as well as a set of conditioning points 𝐶 , where each point c ∈ 𝐶
is associated with a location cx, a value c𝑣 and a normal deriva-

tive direction 𝑐∇ . Points that condition the value of the process are
encoded as c∇ = 0 and points that condition the derivative of the
process as c∇ ≠ 0. The resulting process, GP(`Φ |𝐶 (x), 𝑘Φ |𝐶 (x, y)),
has mean and covariance given by

`Φ |𝐶 (x) = `Φ (x) + 𝑘Φ (x,𝐶𝑥 )𝑘Φ (𝐶x,𝐶x)−1 (𝐶𝑣 − `Φ (𝐶x)) (23)

𝑘Φ |𝐶 (x, y) = 𝑘𝜙 (x, x) − 𝑘Φ (x,𝐶x)𝑘Φ (𝐶x,𝐶x)−1𝑘Φ (𝐶x, y), (24)

which are simply the standard posterior mean and covariance kernel

we introduced in Section 3. We are left with having to choose a prior

covariance kernel 𝑘Φ.

6.1 A non-stationary kernel
Since appearance depends strongly on the parameters of the ker-

nel we would like to be able to vary them spatially, e.g. to allow

for spatially varying roughness in a surface-type GPIS. Building

non-stationary covariance kernels with control over local behavior

is difficult in general since it can be hard to prove that the global

stationary prior shaped prior conditioned posterior

Fig. 20. We show the effect of the different editing methodologies we dis-
cuss in Section 6.2. For example, we can start with a volume-type GP (i.e.
homogeneous mean and isotropic covariance, left) and use prior shaping
to insert a solid object (e.g. a plane with varying uncertainty, middle) and
then deform that object using posterior conditioning (9 handles, right).

function is positive semi-definite. For example, we can’t simply av-

erage between different locally stationary kernels. In the following,

we choose to use the non-stationary covariance kernel derived by

Paciorek and Schervish [2006]:

𝑘𝑁𝑆
Φ (x, y) = 𝜎Φ (x)𝜎Φ (y)

|ΣΦ (x) |
1

4 |ΣΦ (y) |
1

4

| ΣΦ (x)+ΣΦ (y)
2

|−
1

2

𝑘𝑆Φ (
√︁
𝑄Φ (x, y)), (25)

where 𝑘𝑆Φ (𝑡) is any stationary covariance kernel and

𝑄Φ (x, y) = (x − y)⊤
(
ΣΦ (x) + ΣΦ (y)

2

)−1
(x − y). (26)

This kernel is characterized by the parameters of the global sta-

tionary kernel 𝑘𝑆Φ, as well as two spatially varying fields: the “local

variance” 𝜎Φ : R3 → R and the “local anisotropy” ΣΦ : R3 → S3+
where S3+ is the set of positive semi-definite 3× 3matrices. Note that

ΣΦ is in concept very close to how anisotropy is expressed in the

SGGX [Heitz et al. 2015] microflake phase function. The kernel 𝑘𝑁𝑆
Φ

is very flexible, has intuitive parameters, and has been used success-

fully to model complex priors [Dexheimer and Davison 2023]. We

show an example of the results that we can generate by varying

these parameters spatially in Fig. 19.

6.1.1 Model Storage. We store the mean, variance, and anisotropy

fields, `Φ (x), 𝜎Φ (x), and ΣΦ (x), on a voxel grid and retrieve values

at arbitrary evaluation locations via interpolation. For ΣΦ (x), we use
the encoding and linear interpolationmethod proposed byHeitz et al.

[2015]. This allows for smooth interpolation while guaranteeing

that the interpolated matrices are positive semi-definite.

6.2 Manual editing of GPIS
Themost basic way to create GPIS scenes is to specify the underlying

fields directly. This is how we created most of the didactic examples

so far since it allows for a high degree of control. We propose three

intuitive editing approaches, which we show in Fig. 20.

6.2.1 Implicit control via prior shaping. The mean can be edited

like any other classical implicit surface. That is, we can easily apply

CSG operations and warping functions, offset the isosurface, and

more. Similarly, the variance field can be edited like any other scalar

field, for example, via 3D “brushes” that modify the stored values in

their influence region à la the looseness control in Dreams [Media

Molecule 2020]. For the anisotropy field, we can similarly provide
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“anisotropy brushes” that paint the appropriate vector fields to pa-

rameterize the anisotropy. We created most of the simple scenes

in this paper using this type of editing, as it provides very direct

control over all aspects of the GPIS.

6.2.2 Explicit control via posterior conditioning. Additionally, we
can allow the user to exploit the conditioning capabilities of the

Gaussian process representation. To do so, we enable the user to

specify points at which they can place value and derivative con-

straints. This is, in principle, an extension to Witkin and Heckbert’s

control particle approach [Hart et al. 2002; Witkin and Heckbert

1994] for controlling implicit surfaces. The GPIS is then conditioned

on taking on the specified values using classical Gaussian process

regression techniques as discussed in Section 3.1.3. When rendering,

we can simply add the “global” conditioning to our path condition-

ing variable Z , since they behave exactly like any other conditioning

we introduce along the path (except that they are not “forgotten” by

any memory model).

6.2.3 CSG on GPISes. Ideally, one would like to perform CSG op-

erations on GPISes directly. Unfortunately, GPISes are only closed

under linear transforms (e.g. the sum of two GPISes is a GPIS, but

the product is not). Many CSG operations contain non-linear opera-

tions, such as themin or themax. This means that we must support

a certain set of non-Gaussian stochastic implicit surfaces to support

the full range of CSG operations. Luckily, this is trivial to do in our

current implementation. We can simply generate a realization for

each leaf node in the CSG tree and then apply the CSG operations to

the realizations to get the final sample. Our implementation hence

supports the non-Gaussian SISes produced by the non-linear com-

bination of “leaf GPs”. This flexibility does, however, mean that the

cost of generating realizations depends on the number of leaves in

the CSG tree, i.e. we can not “bake down” to a more compact rep-

resentation. Additionally, we must keep track of path conditioning

variables for each leaf GPIS. A lossy alternative is to fit a GPIS to the

non-Gaussian SIS. We show the results of this when applied to the

intersection of two sphere GPISes with different variances in Fig. 21.

CSG GPISes are not only useful for artistic control but have also

proven themselves as a rich model for real-world microstructure in

other fields [Torquato and Lu 1993].

− 40 − 20 0 20

CSG dist. (union)

best Gaussian fit

Fig. 21. We can use CSG operations to combine multiple GPISes (left, blue:
point distribution). The resulting process is not Gaussian anymore, but
our rendering algorithm is still able to visualize it by sampling from each
GPIS individually and applying the CSG operations on each set of samples
(middle). If we fit the closest Gaussian to the CSG distribution (left, orange),
we can represent the result approximately with a single GPIS (right).

Fig. 22. We compute the light transport through the GPIS defined by the
mean and variance fields that stochastic Poisson surface reconstruction (SPSR)
[Sellán and Jacobson 2022] produces (left) with our rendering method (right).
Note that the surface is well-defined in the densely sampled area on the left,
while regions with fewer samples produce a fuzzy volume-like appearance.

6.3 Stochastic Poisson surface reconstruction
Recently, Sellán and Jacobson [2022] presented a surface reconstruc-

tion method, based on the widely used Poisson surface reconstruc-

tion algorithm, that recovers both the mean implicit surface as well

as a spatially varying variance field. We can visualize the output

of their method using our rendering algorithm and show a simple

example in Fig. 22. While Sellán and Jacobson [2022] do show a

rendering-related example and even take the full correlations along

single rays into account [Sellán and Jacobson 2023], they are mainly

interested in the uncertainty of primary hit locations and do not

consider global illumination.

6.4 Filtering implicit surfaces
Inspired by the connections betweenmicrofacet surfaces and GPISes

that we discussed in Section 5.2, we present a method to use GPISes

for implicit surface downsampling by representing the sub-resolution

surface details via their statistics. In the following, we show how to

leverage this intuition for a principled way to construct low-capacity

GPISes that approximate high-capacity surface models well. This is,

in spirit, similar to methods that learn the statistics of textures from

examples [Galerne et al. 2012; Guehl et al. 2020] or downsample

normal maps by fitting distributions over the filtered area [Dupuy

et al. 2013; Olano and Baker 2010].

Fig. 23. We downsample an implicit surface with non-stationary statistics
(left) by first separating it into a mean field (inset) and a residual (middle-
left). We then use a short-time Fourier transform based method to recover
an approximation to the non-stationary autocorrelation function (ACF) of
the residual (middle-right). Finally, we fit a stationary kernel to each of the
ACF blocks (right). We can then interpolate the parameters of this kernel to
compute the global non-stationary covariance kernel in Eq. (25).
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512³ 64³ - mean 64³ - GP (ours)

Fig. 24. We show full-resolution renders on the top and 32x32 pixel images at
the bottom. If we simply downsample the high-resolutionmean surface (left),
we get a hard surface, which does not represent any of the higher frequency
detail that was filtered out, leading to drastically different light transport
(middle). With our representation, we can create a GP that approximates
the statistics of the filtered data, preserving light transport better (right).

Given some high-resolution representation of an implicit surface

𝑓 (x), we want to downsample it, for example, to use less storage,

while preserving the geometry information and any derived quan-

tities, such as light transport, as well as possible. In general, we

parameterize the downsampled approximation
ˆ𝑓Φ by some finite set

of values Φ, chosen such that the residual 𝑅Φ (x) = ˆ𝑓Φ (x) − 𝑓 (x) is
minimal over the domain, i.e. Φ is chosen to minimize

∫
Ω 𝑅Φ (x)2 dx.

Traditionally, this is done using maximum likelihood estimation,

but this discards any information other than the mean. This results
in a drastic difference in the light transport as we show in Fig. 24.

We can go one step further and instead find the Gaussian process

with mean `Φ (x) = ˆ𝑓Φ (x) that is most likely to sample 𝑓 (x). That is,
we effectively capture the original function as well as possible with

the limited capacity we have and then estimate the statistics of the
residual. The resulting process has the form GP(`Φ (x), 𝑘Θ (x, y)).
We now need to find the parameters Θ of the kernel 𝑘Θ such that

the prior process has statistics that are as close to possible to the

residual. This is a common task in Gaussian process regression and

the parameters can be found by minimizing the negative log mar-

ginal likelihood, but this process is expensive and can be unstable

when the number of parameters is large. Instead, we exploit the local

stationarity of our model and compute kernel parameters assum-

ing stationarity over some finite region. We do so by numerically

computing the autocorrelation function (ACF) of the residual using

a Fourier transform-based method over subregions of the domain.

We then find kernel parameters by fitting our model to the numer-

ically retrieved ACF in each region. This gives us a grid of kernel

parameters, which we can interpolate to approximate the full non-

stationary kernel. We illustrate this process in Fig. 23. Note that here

we only discuss fitting based on geometric error. We could alterna-

tively define other loss functions, such as an appearance-based one,

or one that aims to match transmittance between points in space

[Vicini et al. 2021]. We leave this, and exploring how our method re-

lates to recent work that exploits correlation-aware downsampling

for level of detail [Weier et al. 2023], to future work.

7 LIMITATIONS OF GPISES
Gaussian process implicit surfaces inherently share the characteris-

tics of implicit surfaces, enabling robust representation capabilities.

However, this also implies certain challenges inherent to implicit

surfaces. For instance, while editing tools are generally more devel-

oped for explicit representations like meshes, GPISes face challenges

in applying techniques like texture mapping due to complexities

in parameterizing the 3D surface. Further, the lack of analytic ex-

pressions for transmittance and normal distributions prevents our

current formalism from being applied to techniques such as dif-

ferentiable rendering. Future progress in this respect would be of

great interest in light of the recent focus on neural radiance field

techniques and related representations.

Performance. In terms of rendering, implicit surfaces, including

those not based on Gaussian processes, are typically slower than

triangle mesh rendering, which may limit their use in real-time ap-

plications like video games. Nonetheless, for problems where strong

spatial correlations in stochastic geometry significantly influence

the light transport, our proposed rendering framework is orders

of magnitude more efficient than a brute force global-sampling ap-

proach and enables novel appearances that were not previously

practical. The performance of our method is mainly determined

by the amount of correlations one keeps track of—both across ray

intersections andwithin one ray segment, see Section 3 of the supple-

mental. We have found that the acceleration techniques we provide

make it possible to produce images of simple scenes (e.g. Figs. 1,

9 and 19) in a “reasonable” amount of time on a standard desktop

PC, i.e. around 30 seconds for a 512 × 512 pixel render at 1 sample

per pixel when using the Renewal+ memory model. While more

than an order of magnitude slower than rendering e.g. microfacet

surfaces directly, it is fast enough for us to explore the expressive

power of GPISes and efficiently iterate on improvements in future

work. In contrast, consider the global-sampling method of sampling

many realizations and averaging many rendered images. In Fig. 1,

for example, the variations in the surface of the rhinoceros are on

the order of 1mmwith the statue being roughly 1.6m tall. To resolve

these details we would need to discretize to a grid of around 3200
3

and to sample a realization at that resolution then requires inverting

a 3200
3 × 32003 matrix, which would need 4,294,967,200,000GB for

storage alone.

Discrete sampling/ray marching. The function-space algorithm
we present in Section 4.2 represents realizations along ray segments

using a discrete set of samples. Finding the first zero-crossing is

then done via ray marching. If the step size is too large, we en-

counter the usual issues that appear when finding implicit surface

ray intersections with ray marching, such as missing small surface

features. In practice, we choose the step size relative to the cor-

relation length of the covariance kernel (e.g. we set Δ𝑡 such that

𝑘 (𝑥, 𝑥 + Δ𝑡 ®𝜔)/𝑘 (𝑥, 𝑥) > 0.95 ). A more advanced “stochastic root

finding” algorithm and smarter sample distribution are interesting
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topics for future work that have the potential to improve the per-

formance of GPIS rendering without large structural changes to the

method we present here.

Lack of next-event estimation. As mentioned in Section 1, we

currently only support next-event estimation (NEE) when using

diffuse or glossy micro-BSDFs, but not when using a perfect mir-

ror micro-BSDF. This is because we treat the normal sampled at

the intersection point (see Alg. 1) as a deterministic quantity when

evaluating the micro-BSDF. While this choice does reduce imple-

mentation complexity, it is not a fundamental limitation of our

approach—after all, the normal is sampled from a distribution, and

hence, we should be able to apply NEE. We present some thoughts

on how this could be done in Section 3.3 of the supplemental.

8 FUTURE WORK AND CONCLUSION
We see the example use cases that we presented in Section 6 as

validating the expressiveness of GPISes, but concede that they fall

short of being “applications” immediately useful in practice. Hence

we see much room for future work.

8.1 Correlated appearance
For a full rendering method, we need to be able to retrieve additional

properties, such as surface albedo, at intersection points. Of course,

we can simply store these in a separate volumetric data structure,

which we do in this work, but Gaussian processes provide us with

an elegant mechanism for a more principled solution. Multi-output

or multi-task GPs predict vector-valued functions 𝑓𝑁 : R𝐷 → R𝑁
and allow for cross-correlations in their outputs. We should be able

to extend the fitting approach presented in Section 6.4 to include

BSDF parameters.

8.2 Solving elliptic partial differential equations
A central property of this volumetric geometry representation is

that it can be used for a wide variety of geometry processing tasks

instead of just rendering. In particular, we are optimistic that a large

part of the derivations in Section 4 are applicable to other recursive

integral equations, such as the ones that appear in walk-on-sphere

[Sawhney and Crane 2020] and walk-on-boundary [Sugimoto et al.

2023] methods. This should allow us to solve certain classes of

elliptic partial differential equations while taking uncertainty in the

domain boundary and boundary conditions into account.

8.3 More general stochastic processes
So far we have limited ourselves to Gaussian processes. This is a

common choice because they possess many desirable properties,

such as being closed under conditioning and taking derivatives.

More general stochastic processes would allow for an even more

expressive function space, but at the cost of fewer analytical results.

There is existing work that aims to use Gaussian processes to ap-

proximate more general stochastic processes [Gurley 1997; Hong

et al. 2023; Shields et al. 2011], but any Gaussian process will always

produce Beckmann normal statistics. This is limiting because prior

work has shown that normal distributions in the real-world often

have longer tails [Walter et al. 2007]. A logical first choice for a more

complex class of stochastic processes would be the student-t process,

which is essentially a weighted sum of infinitely many Gaussian

processes. There is recent work on student-t microfacet surfaces

[d’Eon 2023] that shows that the resulting vNDFs match real-world

results very well.

8.4 Advanced weight-space methods
The global realization sampling method via the weight-space ap-

proximation is very attractive because it conceptually simplifies

GPIS rendering. Unfortunately, the standard formulation of weight-

space sampling via an expansion of basis functions according to

the process’ spectral density is limited to stationary covariance

kernels. We are not aware of any prior work that extends this to

general non-stationary kernels other than methods that use the

Karhunen-Loève expansion [Huang et al. 2001], which are generally

not seen as practical in applications. That said, we think it is worth-

while to explore how to extend weight-space sampling to support a,

maybe limited, range of non-stationary kernels. We could imagine

that assuming local stationarity and blending basis-function rep-

resentations spatially would produce acceptable results for certain

applications.

8.5 UncertaintyQuantification
A natural question is whether we can propagate the uncertainty in

the scene geometry to uncertainty in the rendered results. That is,

instead of just computing the ensemble average, we would like to

extract higher-order moments, primarily variance. This problem is

known as “uncertainty quantification” [Smith 2013] and progress

here would be useful in a range of real-world applications. Doing

this efficiently when we only have access to Monte Carlo estimates

of the ensemble average is non-trivial and we discuss some reasons

for this in Section 4 of the supplemental. Intuitively, it requires us to

untangle the variance due to uncertainty in the geometry from the

variance due to Monte Carlo sampling of light paths. Also known

as separating parametric uncertainty from intrinsic uncertainty,

methods based on polynomial chaos [Mueller et al. 2023] seem

promising but assume relatively low intrinsic uncertainty. Extending

these to the high-variance Monte Carlo models common in graphics

would allow us to not only compute variation due to geometry but

also other scene parameters.

8.6 Conclusion
In this paper, we have shown that reasoning about the light trans-

port in GPISes allows us to make deep connections between existing

stochastic representations in graphics. We have done so by relying

on Monte Carlo sampling of the involved integrals without being

overly concerned with performance. However, real-world applica-

tions rely on the availability of performant methods. While compute

power grows with time, and methods that were previously seen as

intractable become widely used, we believe that there is much room

for advancing the theory of GPIS rendering. For example, there is

much interest in GPs for large data sets, and we expect that ad-

vances there would directly translate to faster rendering. Analytic

approximations for first passage times are important in many areas

of research and would allow us to decouple rendering times from

sampling efficiency. Tabulating transport functions that cannot be

ACM Trans. Graph., Vol. 43, No. 4, Article 112. Publication date: July 2024.
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computed analytically ahead of time has been used in rendering

before [Müller et al. 2016] and we could use similar techniques to

render with tabulated first-passage times. Finally, improving the

performance of Monte Carlo methods by orders of magnitude is the

bread and butter of the rendering community and with this work we

hope to inspire researchers to apply their knowledge to Gaussian

process simulations, enriching both fields.
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